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We use direct numerical simulation (DNS) based on spectral methods to simulate turbulent
#ow past rigid and #exible cylinders subject to vortex-induced vibrations (VIV). We present
comparisons of amplitude, and lift and drag forces, at Reynolds number 1000 for a short and
a long cylinder, and we examine di!erences between a traveling wave response and a standing
wave response. The DNS data suggest that the often-used empirical formula proposed by Skop,
Gri$n & Ramberg in 1977 overpredicts the drag coe$cient. We propose an appropriate
modi"cation and present preliminary results that indicate that low-dimensional modeling may
be an accurate and e$cient approach in predicting forces in VIV. Given the lack of any
benchmark experiments in VIV currently, the DNS results presented here, both distributions as
well as span- and time-averaged quantities, should be helpful to experimentalists and modelers.

( 2000 Academic Press
1. INTRODUCTION

The prediction of vortex-induced vibrations (VIV) is currently based on semi-empirical
methods, all of which depend on the values of drag and lift coe$cients, either the sectional
values or the span-averaged values [see, for example, Blevins (1990), Naudascher &
Rockwell (1993), Parkinson (1989)]. Despite the extensive force measurements for the rigid
cylinder undergoing forced or free transverse vibrations (Sarpkaya 1978; Staubli 1983;
Gopalkrishnan 1993; Khalak & Williamson 1997; Hover et al. 1998) considerably less is
known for the #exible cylinder subject to VIV [see Alexander (1981), Yoerger et al. (1991),
Vandiver (1983)]. In particular, we are not aware of any direct measurements for lift, drag
and amplitude for either the rigid or #exible cylinder, with the exception of the recent work
by Khalak & Williamson (1997) for a freely vibrating rigid cylinder.

In addition to this lack of benchmark experiments, a survey of the relevant literature
reveals very large variations in the reported values of both the lift and drag coe$cients of
the order of 100% or more. For example, Vandiver (1983) measured a drag coe$cient for
a cable in the range of 1)6}3)5 whereas Kim et al. (1985) obtained values of C

d
from 1)4 to 1)6

for cables 10 times longer than in Vandiver's experiment (Vandiver 1983). Yoerger et al.
(1991) obtained a value of C

d
in the range of 2)2}2)5 for long cables. In contrast, Alexander

(1981) obtained an almost constant value of about C
d
+1)8 in experiments with long

#exible cylinders. Although this variation is, in most cases, due to di!erent experimental
conditions, even in cases with relatively similar conditions, substantial variations in the lift,
drag, and cylinder displacement have been reported. It is clear that, in such a complex
dynamic phenomenon as VIV, even a small variation in the many parameters of the system,
0889}9746/00/040429#12 $35.00/0 ( 2000 Academic Press
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i.e., mass ratio, bending sti!ness, cylinder length, may lead to substantial changes in the
response.

In the absence of any benchmark experiments and with the recent success in simulating
accurately VIV without any ad hoc #ow modeling [see Newman & Karniadakis (1997),
Evangelinos & Karniadakis (1999)], we address in this paper the aforementioned di!erences
using spectral direct numerical simulation (DNS). Speci"cally, we consider free transverse
oscillations of a #exible cylinder subject to VIV at Reynolds number Re"1000 corre-
sponding to a turbulent wake. We investigate both short and long cylinders corresponding
to length-to-diameter ratio of 4n and 378, respectively. We also examine di!erences due to
a standing wave response versus a traveling wave response, the latter being more typical for
longer cylinders (Alexander 1981).

Our objective in this paper is to provide details of the force distribution and the main
factors that a!ect them in a simpli"ed setting but one that resembles closely VIV experi-
ments. Elucidation of the physics and understanding of #ow patterns has been presented
elsewhere (Evangelinos & Karniadakis 1999).

2. PARAMETERS IN DIRECT NUMERICAL SIMULATION

We report here simulation results at Reynolds number Re"1000 and mass ratio
(nondimensionalized cylinder linear density) o"2, which is a typical value for VIV in
water. The Reynolds number is de"ned based on the cylinder diameter d and the free-stream
velocity ;. In all cases we neglect the structural damping as we are interested in the
maximum amplitude response. We also allow only vertical motions in the cross#ow
y-direction, i.e., we do not allow any motion in the streamwise x-direction. We have chosen
the structure eigenfrequency X to be equal to the Strouhal number of the corresponding
stationary cylinder #ow as we are interested in lock-in states only. Deviations from
this resonant state and transition to quasi-periodic states have also been studied by
Evangelinos (1999).

The governing equations are the incompressible Navier}Stokes equations coupled with
the equation of the structure dynamics. In the following analysis, all quantities (unless
explicitly stated) are assumed to be nondimensionalized with respect to the cylinder
diameter d and the free-stream velocity ;. We will refer to a beam as the structure whose
dynamics is described by

L2y
Lt2

"!c2
L4y
Lz4

#

F

o
(1)

in a simpli"ed linear setting, with motion constrained to be in the y}direction and in the
absence of damping. Here, c2"EI/o with EI the bending sti!ness. Also, F is the total lift
force, i.e., the sum of pressure and viscous forces exerted by the #uid to the structure in the
y-direction.

Equation (1) reduces to a forced harmonic oscillator in Fourier space. Employing
a Fourier series representation

d2y'
m

dt2
"!X2

n
m4y'

m
#

F]
m

o
, (2)

with y'
m
(t) the amplitude of the mth structural mode of vibration and F]

m
(t) the projection of

the external lift force to the same mode. Depending on the choice of boundary conditions,
we use either a (complex exponential) Fourier series in terms of e2*mn;@L

z
(for the case of

a beam with freely moving periodic end-points) or a Fourier sine series in terms of
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sin (mnz/¸
z
) (for the case of a beam with pinned end-points). The length of the beam in the

equilibrium position is ¸
z
. The sine series representation naturally satis"es the condition

y"L2y/Lz2"0 at the end-points of the beam. A Fourier series representation gives

X
n
"c (2n/¸

z
)2, (3)

while a Fourier sine series gives

X
n
"c (n/¸

z
)2. (4)

To establish lock-in for the structural mode m we choose

X"X
n
m2+2nSt, (5)

where St is the Strouhal number of the corresponding stationary cylinder #ow. We are
interested in the "rst mode m"1 for the case of the free periodic boundary conditions. This
mode in the Fourier series representation would be the second mode m"2. Employing
equations (5) and (3) at m"1 leads to

c+
1

2

¸2
z

n
StNEI+

1

4
o

¸4
z

n2
St2. (6)

Employing equations (5) and (4) at m"2 reduces again to expression (6), because of the
m2 term in equation (5).

We performed simulations with two di!erent values of the spanwise length, i.e., ¸
z
"4n

and 378. We also performed simulations with the ends of the cylinder free or ,xed (pinned)
at zero displacement. This is accomplished by projecting the force F into a Fourier sine
series that gives zero contributions at the two ends.

The coupled Navier}Stokes/structure dynamics equations are discretized in space using
a new spectral method that employs a hybrid grid in the x}y plane and Fourier complex
modes in the z-direction (cylinder axis). The parallel code Neiqao written in C## and
MPI is employed in all simulations (Warburton 1998). A boundary-"tted coordinate system
is employed, similar to the laminar #ow simulations of Newman & Karniadakis (1997),
which has been validated against an arbitrary Lagrangian Euler (ALE) formulation we have
also developed for moving domains (Warburton & Karniadakis 1997). More details about
the numerical method and the discretization employed in the current simulations can be
found in Evangelinos (1999).

3. SPATIO-TEMPORAL VARIATION OF AMPLITUDE, LIFT AND DRAG

It has been shown by Bloor (1964) for a stationary cylinder and also con"rmed numerically
by Evangelinos & Karniadakis (1999) that the #ow past a stationary cylinder, as well as the
#ow past transversely oscillating cylinders, is turbulent at Re"1000. This has been
documented by the velocity spectra of the near wake that show clearly an inertial range of
about half a decade in wave number. In the following, we perform systematic simulations at
that Reynolds number as higher Reynolds number simulations are prohibitively expensive.
We will "rst present distribution of forces along the span and in time, and subsequently we
will compare span-averaged and time-averaged quantities.

3.1. VIV OF RIGID CYLINDERS

First, we present results from simulations of #ow past a rigid cylinder at Re"1000 subject
to VIV. The spanwise length is ¸

z
"4n and periodic boundary conditions are imposed at



Figure 1. Rigid cylinder: (a) cross-#ow (nondimensional) displacement versus (nondimensional) time; (b)
span-averaged lift coe$cient versus cross-#ow displacement.

432 C. EVANGELINOS E¹ A¸.
the two ends along the cylinder axis. We see in Figure 1(a) that a slightly modulated
harmonic motion is produced with maximum amplitude y

.!9
+0)75, which is larger than

the corresponding value of the two-dimensional simulation of y
.!9

+0)55. This motion is
in-phase with the span-averaged lift coe$cient as revealed in the phase portrait shown in
Figure 1(b), in agreement with the experiments of Brika & Laneville (1993). The rigid
cylinder is allowed to oscillate only in the cross-#ow direction, and therefore the motion is
uniform along its axis. However, the corresponding #ow is strongly three dimensional, as
shown by the spanwise distribution of lift coe$cient in Figure 2. It exhibits strong cellular
structure, with peaks exceeding values of the span-averaged coe$cient by almost 50%. The
same cellular structure in the span-time domain is present in the drag coe$cient [see lower
plot in Figure 2, as well as the energy exchange between the cylinder and the #ow in
Evangelinos (1999)].

The lock-in state of the freely oscillating rigid cylinder corresponds to a two-branch
response as it was documented in the detailed experiments of Khalak & Williamson (1996).
The upper branch corresponds to large amplitude and low values of reduced velocity, and
the lower branch corresponds to low amplitudes and large values of the reduced velocity.
A similar result was also obtained by Hover et al. (1998) at a Reynolds number Re"3800,
which is lower than in Khalak & Williamson (1996) but at comparable (small) values of the
structural damping. The classical results of Feng (1968) were obtained for relatively large
damping [see also Brika & Laneville (1993)] but essentially show the same response at
reduced levels. By comparing the numerical results here with both sets of recent experi-
ments, it is clear that the three-dimensional simulations capture the upper branch corre-
sponding to an oscillation in-phase with the lift coe$cient. There is also agreement in the
amplitude of oscillation with the experimental data, especially with the data of Hover et al.
(1998), which were obtained at Re"3800, closer to the Reynolds number in our simulation.

3.2. VIV OF FLEXIBLE BEAMS

We simulate four di!erent cases of turbulent #ow past a #exible beam, in order to
investigate both the e!ect of the aspect ratio of the beam as well as the e!ect of the boundary
conditions in the spanwise direction. Speci"cally, we consider both periodic ends (Case A) as
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well as ,xed ends (Case B); with subscripts (s) and (l) we will denote the short beam (¸
z
"4n)

and long beam (¸
z
"378), respectively. Regarding initial conditions, for the short beam for

Case A
4
, we start by prescribing a standing wave as the initial state. For Case B

4
we start

from simulation results of a stationary cylinder at Re"1000. For the long beam we
interpolated results from the shorter beam by increasing the cylinder length gradually from
¸
z
"4n to "378 for Case A

l
. For the "xed ends (Case B

l
) we used results from the periodic

ends Case ( A
l
) as initial conditions.

In Figure 3 we plot the cross-#ow displacement of the short beam for both boundary
conditions versus time. For Case A

4
, a transition from the initially prescribed standing wave

to a modulated traveling wave response takes place; only the asymptotic stable traveling
response is plotted in the "gure. For Case B

4
, we also plot the asymptotic stable standing

wave response, and we see that the maximum amplitude is more than one cylinder diameter,
and in fact about 20% higher than the traveling wave response. In Figure 4 we plot the
cross-#ow displacement of the long beam for both boundary conditions versus time. We see
that the response is similar as in the short beam case but the amplitude of vibration is
reduced. Moreover, there seems to be a substantial motion of the middle &&node'' for the
standing wave response, as instantaneously more than one node exist around the mid-span,
in contrast to the response of the short beam. This result is in agreement with experimental
results as well as "eld data (Furnes 1998).

In Figure 5, we plot the lift coe$cient of the short beam. We see that, for Case A
4
, the

maximum lift coe$cient is subject to very large modulation following the large variation in
phase di!erence, unlike the freely oscillating rigid cylinder. For example, regions of small
phase di!erence (less than 103) result in values of maximum lift coe$cient of more than
C

l
+2, but phase di!erences of 903 or higher are also possible leading to lift coe$cient

amplitudes of less than C
l
+0)5. For Case B

4
, the lift variation is also large but it follows the

standing wave response. The same cellular patterns are present in the long beam but with
the maximum values of the lift coe$cient quite larger compared to the values for the shorter
beam. Speci"cally, for Case A

l
, we obtained C

l
+$3 and, for Case B

l
, we obtained

C
l
+$3)5.
In Figure 6 we plot the drag coe$cient for the short beam. Very large values of the drag

coe$cient are obtained locally for both boundary conditions. These values are about three
times higher than the drag coe$cient for a stationary cylinder. The same is true for the long
beam. Speci"cally, the maximum value for C

d
is approximately 3)4 and 4)0 for Cases A

l
and

B
l
, respectively. Similarly, the minimum value of C

d
is approximately 0)7 (Case A

l
) and 0)55

(Case B
l
).

4. COMPARISON OF TIME-AVERAGED AND SPAN-AVERAGED FORCES

In Figure 7, we plot the standard deviation of the motion of the beam with "xed ends along
its axis for the short and long beam. We also include for reference the corresponding values
for the rigid cylinder and the traveling wave response obtained for similar conditions. We
see that for the short beam the traveling wave response is very close to the oscillating rigid
cylinder, although the former corresponds to larger values of maximum amplitude. Note
that the motion of the node is nonzero as there is some small movement of the node, which
is more pronounced especially for the long beam. Also, the displacement of the long beam is
lower than the short beam and similar behavior has been reported by Alexander (1981).
This di!erence may also be due to the relatively lower resolution along the span employed
in the longer beam, but this could not be quanti"ed at the present time. It is clear, however,
that the smaller #ow scales cannot be resolved su$ciently since for the long beam the grid
spacing is about 6d in that case as compared to 0)2d in the short beam.



Figure 7. Standard deviation of the displacement along the span for (a) a short beam and (b) a long beam. The
solid line is the rigid line response and the dashed line is the traveling wave response.

Figure 8. Standard deviation of the lift coe$cient along the beam for (a) a short beam and (b) a long beam. The
solid line is the rigid line response and the dashed line is the traveling wave response.
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In Figure 8 we plot the standard deviation of the lift coe$cient of the beam with "xed
ends along its axis for the short and long beam. We also include for reference the
corresponding values for the rigid cylinder and the traveling wave response. We see that the
span-averaged value is about the same for Cases A

4
and B

4
, and similarly for the long beam.

The value for the rigid cylinder is substantially larger compared to all cases simulated.
In Figures 9 and 10, we plot the mean and standard deviation of the drag coe$cient of the

beam with "xed ends along its axis for the short and long beam. We also include for
reference the corresponding values for the rigid cylinder and the traveling wave response.
We see that the mean drag coe$cient for all cases is in the range of 1)6}1)8, in agreement
with the experiments of Alexander (1981), except for the rigid cylinder that corresponds to
a mean drag coe$cient of approximately 2)1. The r.m.s. values of the drag coe$cient for the
oscillating rigid cylinder are more than 30 times larger than the values of the stationary
cylinders, in agreement with the "ndings of Khalak & Williamson (1997).

We now turn our attention to time variation of the span-averaged quantities. In
particular, we are examining the cases where homogeneity exists along the spanwise



Figure 9. Variation of the mean drag coe$cient along the beam for (a) a short beam and (b) a long beam. The
solid line is the rigid line response and the dashed line is the traveling wave response.

Figure 10. Standard deviation of the drag coe$cient along the beam for (a) a short beam and (b) a long beam.
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direction, which is not true, for example, for the "xed ends cases. To summarize the results
regarding the cylinder lift forces, we plot in Figure 11 the histories of span-averaged lift
coe$cient for the rigid freely oscillating cylinder, and the short and long beam. We also
include for reference the corresponding values of the coe$cients for a stationary cylinder
subject to uniform #ow at Re"1000. We see that the lift coe$cient of the freely oscillating
rigid cylinder is much larger than all the other cases, and that the stationary cylinder has the
smallest mean and r.m.s. values. Measurements of the lift forces for the rigid cylinder
corresponding to very small structural damping have been performed only recently by
Khalak & Williamson (1997) and by Hover et al. (1998). It was found that very large values
of the lift coe$cient are possible at lock-in, close to the values observed in the simulations,
although the experimental values are somewhat higher, especially in the experiments of
Khalak & Williamson (1997), possibly due to the higher Reynolds number.

To summarize the results regarding the cylinder drag forces, we plot in Figure 12 the
histories of span-averaged drag coe$cient for the rigid freely oscillating cylinder, and
the short and long beam along with the history for a stationary cylinder. Here we can see the
very large amplitudes of the drag coe$cient compared to the stationary cylinder. Using
the DNS data, for example the more accurate data for the short beam, we can also evaluate



Figure 11. Comparison of span-averaged lift coe$cient histories for (a) a stationary cylinder, (b) a freely
ocillating rigid cylinder, (c) a short beam with free ends, and (d) a long beam with free ends.
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the empirical formula due to Skop et al. (1977),

C
d
"C

d0C1#1)043A
2y

3...4.
d B

0>65

D , (7)

where C
d0
"1)04 is the drag coe$cient of a stationary cylinder, y

3...4
is the r.m.s. amplitude

of the motion, and d is the cylinder diameter. In Figure 13 we plot the prediction from the
above equation using the r.m.s. amplitude values for the short beam (see Figure 7) against
the DNS data. We see that equation (7) overpredicts the DNS data. Instead, a better
approximation is given by

C
d
"C

d1C1#AA
2y

3...4.
d B

B

D , (8)

where A"0)355 and B"0)9 (shown also in the Figure marked with diamonds). Note that
C

d1
is here the drag coe$cient at the nodes which is about 1)4. Equation (8) is very similar to



Figure 12. Comparison of span-averaged drag coe$cient histories for (a) a stationary cylinder, (b) a freely
oscillating rigid cylinder, (c) a short beam with free ends, and (d) a long beam with free ends.
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the equation used for an oscillating rigid cylinder. For the DNS data presented here, if we
take A+1 and also B"1 (with C

d1
the stationary cylinder value) we obtain a value for

C
d
very close to the mean drag coe$cient for a rigid cylinder as predicted by DNS. Finally,

one can improve the formula in equation (8) by "tting the data as best as possible and select
appropriate coe$cients A and B. For example with A"0)29 and B"1)79 we obtain the
curve marked with squares in Figure 13. However, this formula does not exhibit a decreas-
ing slope for C

d
with increasing amplitude (this remark was made by an anonymous referee).

In summary, the often-used formula of Skop et al. in engineering analysis seems to
overpredict the standing wave responses, which are more typical in ocean engineering
applications.

5. SUMMARY AND DISCUSSION

In this paper we analyzed DNS data of #ow past rigid and #exible cylinders subject to
lock-in vortex-induced vibrations. We chose to perform all simulations at Re"1000, as this
corresponds to an order of magnitude increase compared to our previous studies Newman
& Karniadakis (1997), while the corresponding #ow exhibits a turbulent wake. Speci"cally,



Figure 13. Mean drag coe$cient along the beam for a short beam. Circles denote DNS data, stars denote the
prediction by equation (7), squares denote the prediction by equation (8) for A"0)29 and B"1)79, and diamonds

denote the prediction by equation (8) for A"0)355 and B"0)9.

TABLE 1

Summary of time- and span-averaged amplitude, lift and drag coe$cients at lock-in. (zero
structural damping is assumed and Re"1000).

y
.!9

/d y
3...4.

/d (C
l
)
3...4.

C
d

(C
d
)
3...4.

Stationary 0 0 0)12 1)04 0)02
Rigid 0)75 0)51 1)53 2)11 0)65
Short beam*Free 0)93 0)51 0)83 1)86 0)48
Short beam*Fixed 1)09 0)43 0)86 1)81 0)43
Long beam*Free 0)61 0)36 0)93 1)75 0)51
Long beam*Fixed 0)85 0)25 1)16 1)62 0)44
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we presented results for two di!erent responses of the cylinder motion, the "rst resembling
a traveling (progressive) wave, and the second resembling a standing wave. The maximum
cylinder displacement is about 0)9d in the traveling wave case and 1)1d in the standing wave
case. The lift coe$cient (r.m.s.) is about 0)8 for both cases but slightly larger for the standing
wave. Similarly, the drag coe$cient is about the same for both cases (C

d
+1)8) but slightly

lower for the standing wave. Detailed force distributions along the span and in time are
given in the paper, and a summary of time- and span-averaged quantities is presented in
Table 1.
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The main assumption is that there is no structural damping in the system and that we
operate at lock-in. As the Reynolds number is still relatively low compared to most
experimental conditions, we expect some Reynolds number e!ects for the quantities
summarized in Table 1. Other possible sources of error are: boundary conditions due to
truncation of the domain, spatial and temporal discretization (primarily for the long-beam
simulations), and time-averaging errors (due to low-frequency modulations). Based on
various tests for all these factors [see, for example, Evangelinos (1999)], we expect the total
error due to such sources to be less than 10%, and thus the results in Table 1 are accurate
within that range.

We also tested the applicability of the often-used formula for predicting the drag
coe$cient based on the standard deviation of the motion Skop et al. (1977), and we found it
to overpredict the calculated values. A similar model we proposed but with very di!erent
coe$cients seemed to "t the data better. On the other hand, DNS studies of the type
presented here are currently prohibitively expensive to be used in engineering design of VIV.
The question then remains, as to what will be a good and e$cient model to predict mean
forces or force distribution in VIV applications. We believe that the answer could be
provided by dynamical systems modeling, given the low dimensionality of the wake.

To test this hypothesis, we have repeated the DNS for case A
4
(short beam with periodic

ends) but with signi"cantly reduced resolution, i.e., we reduced the number of degrees of
freedom (d.o.f.) from about 5 millions per "eld in the previous simulations to approximately
50 000 d.o.f. per "eld, with only two complex Fourier modes (i.e., four physical planes) along
the span of 4nd. The response is shown in Figure 14 where we plot the amplitude of the
motion along the span and in time. We see that a standing wave response is obtained with
somewhat reduced amplitude compared to the high-resolution simulation. The correspond-
ing mean drag coe$cient is C

d
+2)0, which is about 10% higher than in the high-resolution

simulation but approximately 15% lower than the corresponding two-dimensional simula-
tion. We recall here that with only two (complex) Fourier modes along the span, we resolve
basically the mean #ow (with the zeroth mode) and the "rst excited mode. In other words,
we resolve only one three-dimensional mode, which apparently is su$cient to give a big
improvement (compared to the two-dimensional predictions) in the force distribution and
also the motion amplitude, given that the maximum amplitude of the two-dimensional
simulation is only 0)55d. We also note that the Fourier representation along the span is the
best possible representation from the approximation point of view. However, there was no
attempt here to obtain the best representation of the #ow by constructing an appropriate
hierarchy of the most energetic modes in the planes perpendicular to the cylinder axis, using
for example the Karhunen-Loève approach (Newman & Karniadakis 1996). We expect that
this more systematic approach will result in a substantially lower-dimensional representa-
tion to predict the dynamics of VIV. We are currently working on that front and we will
report results in the near future.
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Figure 2. Rigid cylinder: (a) lift coe$cient along the span versus time; (b) drag coe$cient along the span versus
time.

Figure 3. Short beam: cross-#ow displacement along the span versus time. (a) Periodic ends; (b) "xed ends.



Figure 4. Long beam: cross-#ow displacement along the span versus time. (a) Periodic ends; (b) "xed ends.

Figure 5. Short beam: lift coe$cient along the span versus time. (a) Periodic ends; (b) "xed ends.



Figure 6. Short beam: drag coe$cient along the span versus time. (a) Periodic ends; (b) "xed ends.

Figure 14. Low-resolution simulation for the short beam (Case A
4
) with only two modes along the span.

Cross-#ow displacement along the span versus time.
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